Integration of Genetic Algorithm with Tabu Search for Job Shop Scheduling with Unordered Subsequence Exchange Crossover Thamilselvan, R. and P. Balasubramanie

نویسنده

  • P. Balasubramanie
چکیده

Problem statement: The problem of scheduling n jobs on m machines with each job having specific machine route has been researched over the decade. The Job Shop Scheduling (JSS) is one of the hardest combinatorial optimization problems. Each resource can process at most one job at a time. Approach: This study proposes a new approach to solve a Job Shop Scheduling problem with the help of integrating Genetic Algorithm (GA) and Tabu Search (TS). After an initial schedule is obtained the GA, the result is given as an input to TS to improve the status of the initial schedule. The objective of this study is to minimize the makespan, process time and the number of iterations. This approach achieves a better result with the help of efficient chromosome representation, powerful crossover strategies and neighborhood strategies. Results: This research resolves the allocation of operation to different machine and the sequence of operation based on machine sequence. Job Scheduling is the process of completing jobs over a time with allocation of shared resources. It is mainly used in manufacturing environment, in which the jobs are allocated to various machines. Jobs are the activities and a machine represents the resources. It is also used in transportation, services and grid scheduling. Conclusion/Recommendations: The result and performance of the proposed work is compared with the other conventional algorithm and it is also testing using standard benchmark problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrating Genetic Algorithm, Tabu Search Approach for Job Shop Scheduling

This paper presents a new algorithm based on integrating Genetic Algorithms and Tabu Search methods to solve the Job Shop Scheduling problem. The idea of the proposed algorithm is derived from Genetic Algorithms. Most of the scheduling problems require either exponential time or space to generate an optimal answer. Job Shop scheduling (JSS) is the general scheduling problem and it is a NP-compl...

متن کامل

Integrating Genetic Algorithm, Tabu Search and Simulated Annealing For Job Shop Scheduling Proble

Job Shop Scheduling Problem (JSSP) is an optimization problem in which ideal jobs are assigned to resources at particular times. In recent years many attempts have been made at the solution of JSSP using a various range of tools and techniques such as Branch and Bound and Heuristics algorithms. This paper proposed a new algorithm based on Genetic Algorithm (GA), Tabu Search (TS) and Simulated A...

متن کامل

Flow Shop Scheduling Problem with Missing Operations: Genetic Algorithm and Tabu Search

Flow shop scheduling problem with missing operations is studied in this paper. Missing operations assumption refers to the fact that at least one job does not visit one machine in the production process. A mixed-binary integer programming model has been presented for this problem to minimize the makespan. The genetic algorithm (GA) and tabu search (TS) are used to deal with the optimization...

متن کامل

Integrating Genetic Algorithm with a Tabu Search (GTA) for Network Traffic Scheduling

Routing in networks is the major issue, because the packets may be sent through different topologies. This issue is addressed with the help of the metaheuristic algorithm. In the proposed work the Genetic Algorithm (GA) is integrated with Tabu Search to schedule the packets effectively in computer networks. The initial path is generated by Genetic Algorithm and then it is optimized by Tabu Sear...

متن کامل

An Improved Tabu Search Algorithm for Job Shop Scheduling Problem Trough Hybrid Solution Representations

Job shop scheduling problem (JSP) is an attractive field for researchers and production managers since it is a famous problem in many industries and a complex problem for researchers. Due to NP-hardness property of this problem, many meta-heuristics are developed to solve it. Solution representation (solution seed) is an important element for any meta-heuristic algorithm. Therefore, many resear...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012